當(dāng)前位置:網(wǎng)校一點通>社會資訊 >   正文

黃仁勛首公開回應(yīng)DeepSeek爆火 到底說了什么?

導(dǎo)讀:今年1月底,DeepSeek發(fā)布的R1模型對整個科技圈造成了巨大轟動,英偉達(dá)更是應(yīng)聲下跌16.79%,市值蒸發(fā)5900億美元,創(chuàng)下美國金融史記錄。‍...

今年1月底,DeepSeek發(fā)布的R1模型對整個科技圈造成了巨大轟動,英偉達(dá)更是應(yīng)聲下跌16.79%,市值蒸發(fā)5900億美元,創(chuàng)下美國金融史記錄。‍‍‍‍‍‍‍‍‍

英偉達(dá)發(fā)言人當(dāng)時表示:“DeepSeek是一項出色的人工智能進(jìn)步,也是測試時間縮放的完美例子。”盡管英偉達(dá)已經(jīng)回血,不過其CEO黃仁勛一直未公開回應(yīng)此事。

黃仁勛首公開回應(yīng)DeepSeek爆火 到底說了什么?

周四,黃仁勛在一場訪談中首次回應(yīng)了DeepSeek,他表示投資者對DeepSeek 在人工智能領(lǐng)域取得的進(jìn)展存在誤解,這導(dǎo)致了市場對英偉達(dá)在股市的錯誤反應(yīng)。DeepSeek以低成本高性能引發(fā)關(guān)注后,投資者開始質(zhì)疑科技公司投入巨額成本建設(shè)AI基礎(chǔ)設(shè)的必要性。黃仁勛表示,市場的劇烈反應(yīng)源于投資者的誤讀。盡管 R1 的開發(fā)似乎減少了對算力的依賴,但人工智能行業(yè)仍需強(qiáng)大的算力來支持模型后訓(xùn)練處理方法,這些方法能讓AI模型在后訓(xùn)練進(jìn)行推理或預(yù)測。“從投資者的角度來看,他們認(rèn)為世界分為預(yù)訓(xùn)練和推理兩個階段,而推理就是向 AI 提問并立即得到答案。我不知道這種誤解是誰造成的,但顯然這種觀念是錯誤的。”黃仁勛指出,預(yù)訓(xùn)練仍然重要,但后處理才是“智能最重要的部分”,也是“學(xué)習(xí)解決問題的關(guān)鍵環(huán)節(jié)”。此外,黃仁勛還認(rèn)為R1開源后,全球范圍內(nèi)展現(xiàn)出的熱情令人難以置信,“這是一件極其令人興奮的事情”。黃仁勛訪談主要環(huán)節(jié)實錄:

黃仁勛:

What's really exciting and you probably saw,what happened with DeepSeek.

The world's first reasoning model that's open sourced,and it is so incredibly exciting the energy around the world as a result of R1 becoming open sourced,incredible.

真正令人興奮的是,你可能已經(jīng)看到了,DeepSeek發(fā)生了什么。世界上第一個開源的推理模型,這太不可思議了,因為R1變成了開源的,全球都因此而充滿了能量,真是不可思議。

訪問者:

Why do people think this could be a bad thing?I think it's a wonderful thing.

為什么人們認(rèn)為這可能是一件壞事呢?我認(rèn)為這是一件美好的事情。

黃仁勛:

Well,first of all,I think from an investor from an investor perspective,there was a mental model that,the world was pretraining,and then inference.And inference was,you ask an AI question and it instantly gives you an answer,one shot answer.

I don't know whose fault it is,but obviously that paradigm is wrong.The paradigm is pre training,because we want to have foundation you need to have a basic level of foundational understanding of information.In order to do the second part which is post training.So pretraining is continue to be rigorous.

The second part of it and this is the most important part actually of intelligence is we call post training,but this is where you learn to solve problems.You have foundational information.You understand how vocabulary works and syntax work and grammar works,and you understand how basic mathematics work,and so you take this foundational knowledge you now have to apply it to solve problems.

首先,我認(rèn)為從投資者的角度來看,過去存在一種思維模型是,世界是預(yù)先訓(xùn)練好的,然后是推理。推理就是你問AI一個問題,它立即給你一個答案,一次性回答。我不知道這是誰的錯,但顯然這種模式是錯誤的。

正確的模式應(yīng)該是先進(jìn)行預(yù)訓(xùn)練,因為我們想要有一個基礎(chǔ),你需要對信息有一個基本的理解水平,以便進(jìn)行第二個部分,也就是后期訓(xùn)練。所以預(yù)訓(xùn)練要繼續(xù)保持嚴(yán)謹(jǐn)。第二部分實際上是智能最重要的部分,我們稱之為后訓(xùn)練,但這是你學(xué)習(xí)解決問題的地方,你已經(jīng)掌握了基礎(chǔ)知識,你明白詞匯是如何工作的,句法是如何工作的,語法是如何工作的,你明白了基本數(shù)學(xué)是如何工作的,所以你現(xiàn)在必須應(yīng)用這些基礎(chǔ)知識來解決實際問題……

So there's a whole bunch of differentlearning paradigms that are associated with post training,and in this paradigm,the technology has evolved tremendously in the last 5 years and computing needs is intensive.And so people thought that oh my gosh,pretraining is a lot less,they forgot that post training is really quite intense.

因此后訓(xùn)練有一系列很多不同的學(xué)習(xí)模式,在這種模式下,技術(shù)在過去五年里取得了巨大的進(jìn)步,計算需求非常大,所以人們認(rèn)為,哦天那,預(yù)訓(xùn)練要少得多。但是他們忘記了后訓(xùn)練其實相當(dāng)大。

And then now the 3rd scaling law is ,the more reasoning that you do,the more thinking that you do before you answer a question.And so reasoning is a fairly compute intensive part of.And so I think the market responded to R1 as 'oh my gosh AI is finished',you know it dropped out of the sky ,we don't need to do any computing anymore.It's exactly the opposite.

現(xiàn)在第三條縮放定律是,你做的推理越多,你在回答問題之前思考得越多,推理就會越好,這是一個計算量相當(dāng)大的過程。因此我認(rèn)為市場對R1的反應(yīng)是“哦我的天哪,AI到頭了",就好像它從天而降,我們不再需要進(jìn)行任何計算了,但實際上完全相反。

內(nèi)容
主站蜘蛛池模板: 新疆| 婺源县| 保亭| 锦州市| 堆龙德庆县| 正宁县| 潜山县| 昂仁县| 张家港市| 株洲市| 阿合奇县| 准格尔旗| 社旗县| 南雄市| 石泉县| 宿松县| 石家庄市| 汾西县| 尚义县| 石柱| 湟源县| 元谋县| 陆川县| 新安县| 关岭| 茶陵县| 牡丹江市| 北京市| 饶平县| 内丘县| 手机| 潢川县| 永登县| 马山县| 屏东市| 呼玛县| 临沂市| 淮滨县| 江安县| 洱源县| 葵青区|